

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER-18 EXAMINATION

Subject Name: Data Structure using C <u>Model Answer</u> Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No ·	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following :	10 M
	a	Define the term algorithm.	2 M
	Ans	Algorithm is a stepwise set of instructions written to perform a specific task.	Correct definition 2M
	b	List any 4 applications of queue.	2 M
	Ans	 In computer system to maintain waiting list for single shared resources such as printer, disk, etc. It is used as buffers on MP3 players, iPod playlist, etc. Used for CPU scheduling in multiprogramming and time sharing systems. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until a service representative is free. Handling of interrupts in real-time systems. Simulation 	Any four apllications- 1/2 M each
	C	Describe following terms w.r.to tree: (i) Leaf node (ii) Level of node	2 M
	Ans	Example:	Description of each term 1M

	A Level 0 B C Level 1 (i) Leaf node: A node without any child node is called as leaf node. Level 1 (ii) Leaf node: A node without any child node is called as leaf node. Nodes B and C are leaf node as shown in above example. (ii) Level of node: Position of a node in the hierarchy of a tree is called as level of node. Level of node B is 1 as shown in above example.									
d	Differentiate between stack and queue.(Any two points) 2 M									
Ans	Stack 1. Stack is a data structure in which insertion and deletion operations are performed at same end.	Queue 1. Queue is a data structure in which insertion and deletion operations are performed at different ends.	correct differences- 1M each							
	2. In stack an element inserted last is deleted first so it is called Last In First Out list.	 In Queue an element inserted first is deleted first so it is called First In First Out list. 								
	3.In stack only one pointer is used called as stack top	3.In Queue two pointers are used called as front and rear								
	4. Example: Stack of books	4. Example : Students standing in a line at fees counter								
	5.Application:	5. Application:								
	RecursionPolish notation	 In computer system for organizing processes. In mobile device for sending receiving messages. 								

	6. Representation: Usi	ng array	6. Representation: Usin	g array				
	1	3	A B C D Front D	Rear				
e	Describe undirected gra	aph with suita	ble example.		2 M			
Ans	Undirected graph: A graph in which the edges do not have any direction associated with them is known as undirected graph. In undirected graph, if an edge exists between two nodes A and B then the nodes can traverse from A to B as well as from B to A. Each edge is bidirectional. Example:-							
f	Define the terms: Linea	r data structu	re and non-linear data	structure.	2 M			
Ans	Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in any particular sequence is known as nonlinear data structure. Example: graph and tree.							
g	convert infix expression	into prefix ex	xpression:		2 M			
	(A+B)*(C/G)+F							
Ans	Infix expression	Read Character	Stack contents	Prefix expression	Correct prefix expression -			
		ľ	-					
	(A+B)*(C/G)+	+	+	F				

		(A+B)*(C/G))	+)	F				
		(A+B)*(C/G	G	+)	GF				
		(A+B)*(C/	1	+)/	GF				
		(A+B)*(C	C	+)/	CGF				
		(A+B)*((+	/CGF				
		(A+B)*	*	+*	/CGF				
		(A+B))	+*)	/CGF				
		(A+B	В	+*)	B/CGF				
		(A+	+	+*)+	B/CGF				
		(A	Α	+*)+	AB/CGF				
		((+*	+AB/CGF				
					*+AB/CGF				
					+*+AB/CGF				
2		Attempt any THRE	E of the follow	ving :		12 M			
	a	Describe working of	f linear search	with example.		4 M			
	Ans	Describe working of linear search with example.In linear search, search element is compared with each element from the list in a sequence.Comparison starts with first element from the list and continues till number is found orcomparison reaches to the last element of the list.As each element is checked with search element, the process of searching requires moretime. Time complexity of linear search is O (n) where n indicates number of elements inlist.Linear search on sorted array:-On sorted array search takes place till element is found orcomparison reaches to an element greater than search element.Example:- Using array representationInput list 10, 20, 30, 40, 50 and Search element 30, Index =0Iteration 110203040							

 	Index = Index + 1								
	Iteration 2								
	10 20 30 40 50								
	20 ! = 30								
	Index = Index + 1								
	Iteration 3								
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	30 = 30								
	Number found								
b	Describe the concept of linked list with the terminologies: node, next Pointer, null pointer and empty list.	4 M							
Ans	Node : Each data element in a linked list is represented as a node. Node contains two parts- one is info (data) and other is next pointer (address). Info part stores data and next pointer stores address of next node.								
	Node								
	Info Next pointer								
	Next pointer : It is a pointer that holds address of next node in the list i.e. next pointer points to next node in the list								
	Header node Next pointer START 10 20 NULL								
	Null pointer : It is a pointer that does not hold any memory address i.e. it is pointing to nothing. It is used to specify end of the list. The last element of list contains NULL pointer to specify end of list.								

	Header node START 10 Empty list: Each linke then that list is said to b Header node NULL	d list has a e empty lis	• header no	→ 20 de. When h	eader nod	Null pointer			
c	Describe queue full an suitable diagrams.	d queue e	mpty opera	tion condit	ions on liı	near queue with	4 M		
Ans	Queue full:-A queue is full when its rear pointer points to max -1 position. Max is maximum number of elements in a queue. If rear pointer is not equal to max-1 then a new element can be added to a queue. If queue is full then new element cannot be added to a queue. Example:- Consider max=4. First element is stored at 0th position and last element is stored at 3rd								
	position in queue. In the so queue is full.	e diagram g	given below	rear pointe	r is pointin	ng to max-1 (3) position	empty-1M, diagram- 1M		
		0	1	2	3	1			
		A	В	С	D]			
] Front	:] Re	ear			
	Queue empty: A queue is empty when its front pointer points to -1 position. When front pointer is -1 then one cannot delete any data from a queue. Example:-In the diagram given below front pointer points to -1 value i.e. it points no location inside queue so queue is empty.								
	-	1 () 1	2	3	3			
		_ L_							
	F	ront							

d	1	Differentiate between general tree and binary tree. (any four points)									
A	Ans	Sr. no	General Tree	Binary Tree	Any four relevant						
		1	A general tree is a data structure in which each node can have infinite number of children	A Binary tree is a data structure in which each node has at most two nodes i.e. left and right	differences -1M each						
		2	In general tree, root has in- degree 0 and maximum out- degree n .	In binary tree, root has in- degree 0 and maximum out- degree 2 .							
		3	In general tree, each node have in-degree one and maximum out-degree n .	In binary tree, each node have in-degree one and maximum out-degree 2 .							
		4	Height of a general tree is the length of longest path from root to the leaf of tree. Height(T) = { max (height(child1) , height(child2) , height(child-n) +1}	Height of a binary tree is : Height(T) = { max (Height(Left Child) , Height(Right Child) + 1}							
		5	Subtree of general tree are	Subtree of binary tree is ordered							
		6	General tree	Binary Tree							
			Root	Root							
3		Attempt any	THREE of the following :		12 M						
a	l	Write a C pro	ogram for deletion of an elemen	nt from an array.	4 M						
A	Ans	<pre>#include <stdio.h> int main() { int array[100], position, c, n; printf("Enter number of elements in array\n"); scanf("%d", &n); printf("Enter %d elements\n", n); for (c = 0; c < n; c++) scanf("%d", &array[c]); printf("Enter the location where you wish to delete element\n"); scanf("%d", &position); }</stdio.h></pre>									

	printf('	"Deletion not pos	sible.\ n ");									
	else											
	{											
	for (c = position - 1; c < n - 1; c++) array[c] = array[c+1];											
	printf('	"Resultant array:	n ");									
	for (c =	= 0; c < n - 1; c + 1	-)									
	print	f("%d\ n ", array[c	2]);									
	}											
	return 0	;										
	}											
b	Convert follo	wing expression	into postfix form. Give stepw	ise procedure.	4 M							
	A+B↑C*(D/E)-F/G.										
Ans	Consider input expression as (A+B↑C*(D/E)-F/G)											
	Scanned	Operation	Postfix Expression		Expression							
	Symbol	stack			4M							
	((
	C	C										
	А	(А									
			Δ									
	т	(+	Α									
	В	(+	AB									
	•	(· •	AD									
		(+)	AB									
	С	(+↑	ABC									
	*	(+*	ABC↑									
	((+*(ABC↑									
	``	```										
	D	(+*(ABC↑D									
	/	(+*(/	ABC1D									
	E	(+*(/	ABC↑DE									
)	(+*	ABC†DE/									
	-	(-	ABC↑DE/*+									
	F	(-	ABCTDE/*+F									
		1										

	/	(-	-/		ABC	C↑DE/*	+F						
	G	(-	_/		ABC	C↑DE/*	+FG						
)	E	EMPTY	Y	ABC	C↑DE/*	+FG/-		-				
	POSTFIX	EXPRI	ESSIO	DN: AB	C↑DE	/*+FG/	/_						
c	Find the po below. Sho	osition w each	of eler step.	nent 29	9 using	binar	y searc	h meth	od in a	in arra	y 'A' giv	en	4 M
	A={11,5,21,3,29,17,2,43}												
Ans	An array which is given A[]= $\{11,5,21,3,29,17,2,43\}$ is not in sorted manner, first we need to sort them in order; So an array will be A[]= $\{23,5,11,17,21,29,43\}$ and the value to be searched is VAL = 20										we need $AL = 29$	1M for taking sorted input & 1M each	
	The binary search algorithm will proceed in the following manner.											for every iteration	
		Γ	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]			
		F	2	3	5	11	17	21	29	43			
	Iteration 1	:											
	BEG = 0, END = 7, MID = $(0 + 7)/2 = 3$												
	Now, VAL = 29 and A[MID] = A[3] =11												
	A[3] is less than VAL, therefore, we now search for the value in the second half of the array.												
	So, we char	So, we change the values of BEG and MID.											
	Iteration 2	•											
	Now, BEG A [5] = 21	= MID	+ 1 =	4, ENI	D = 7, N	/IID = ((4 + 7)/	2 =11/2	2 = 5; V	VAL = 2	29 and A	[MID] =	
	A[5] is less than VAL, therefore, we now search for the value in the second half of the segment.												
	So, again v	ve chan	ge the	values	of BEC	G and N	/ID.						
	Iteration 3	:											
	Now, BEG A [6]=29	= MID	+ 1 =	6, ENI	D = 7, N	/IID = ((6 + 7)/	2 = 6 N	low, VA	AL = 29	9 and A [[MID] =	
1	1												1

	So, Element 29 is found at 6 th location in give	en array A[]={2,3,5,11,17,21,29,43}.								
d	give adjacency list and adjacency matrix for given graph:									
Ans	Adjacency List: (Using Linked List) Here, we use doubly linked list for storing hears respective adjacent node to it.	ader node list and singly linked list for storing	2M for Correct List and 2M for Correct matrix							
	Adjacency List									
	Nodes	Adjacent Nodes								
	A	B								
	B D,E									
	C A,E									
	D B									
	E	U U								

		Adjacency Matrix: (Using Array)	0	- 1	0	0	0	7	
		В	0	0	0	1	1		
		C	1	0	0	0	1		
		D	0	1	0	0	0		
		E	0	0	0	1	0		
4		Attempt any THREE of the follow	ing	:					12 M
	a	Describe working of bubble sort w	rith (exam	ple.				4 M
	Ans	Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order. This algorithm is not suitable for large data sets as its average and worst case complexity is of O (n^2) where n is the number of items.							2M for description & 2M for example
		Bubble Sort Working:							
		We take an unsorted array for our ex $O(n^2)$ time so we're keeping it short a	amp and	ole as preci	A[]= se.	={19	, 2, 2	7, 3, 7, 5, 31}. Bubble sort takes	
		{{**Note: Pass 4 onwards optional*	*}}						
		Pass 1: 2,19,27,3,7,5,31							
		2,19,27,3,7,5,31							
		2,19,3,27,7,5,31							
		2,19,3,7,27,5,31							
		2,19,3,7,5,27,31							
		Pass 1 Completed							
		Pass 2: 2,19,3,7,5,27,31							
		2,3,19,7,5,27,31							
		2,3,7,19,5,27,31							

	2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	Pass 2 Completed	
	Pass 3: 2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	2,3,5,7,19,27,31	
	Pass 3 Completed	
	Pass 4: 2,3,5,7,19,27,31	
	Pass 4 Completed	
	Pass 5: 2,3,5,7,19,27,31	
	Pass 5 Completed	
	Pass 6: 2,3,5,7,19,27,31	
	Pass 6 Completed	
b	Construct a binary search tree for following elements:	4 M
	30,100,90,15,2,25,36,72,78,10 show each step of construction of BST.	
Ans	Stepwise construction of Binary search tree for following elements:	4M for all
	30 100 90 15 2 25 36 72 78 10 is as follows:	correct
	<i>20,100,20,20,20,20,00,10,10,10,10,10,10,10,10,10,10,10,10</i>	steps

	For example, the function should return 5 for linked list 1->3->1->2->1.	
	Algorithm: Using Iterative Solution	
	1) Initialize count as 0	
	2) Initialize a node pointer, current = head.	
	3) Do following while current is not NULL	
	a) current = current -> next	
	b) count++;	
	4) Return count	
d	Write a program in 'C' to insert an element in a linear queue.	4 M
 Ans	// C program to insert an element in a linear queue using array	4M for
	#include <stdio.h></stdio.h>	correct
	#include <conio.h></conio.h>	logic &
	#define n 5	code
	void main()	eode
	{	
	int queue[n],ch=1,front=0,rear=0,i,j=1,x=n;	
	//clrscr();	
	printf("Queue using Array");	
	printf("\n1.Insertion \n2.Display \n3.Exit");	
	while(ch)	
	{	
	<pre>printf("\nEnter the Choice:");</pre>	
	scanf("%d",&ch);	
	switch(ch)	
	{	
	case 1:	
	if(rear==x)	
	printf("\n Queue is Full");	
	else	
	{	
	printf("\n Enter no %d:",j++);	
	scanf("%d",&queue[rear++]);	
	}	
	break;	
	case 2:	
	printf("\n Queue Elements are:\n ");	
	1t(tront==rear)	
	printt("\n Queue is Empty");	

	else	
	for(1=front; 1 <rear; 1++)<="" th=""><th></th></rear;>	
	nrintf("%d" queue[i]):	
	printf("\n").	
	}	
	break.	
	case 3:	
	exit(0);	
	default:	
	printf("Wrong Choice: please see the options");	
	}	
	}	
	}	
	getch();	
	}	
e	Describe circular linked list with suitable diagram. Also state advantage of circular	4 M
	linked list over linear linked list.	
Ans	Circular Linked List	2M for
	Δ circular linked list is a variation of linked list in which the last element is linked to the	description
	first element. This forms a circular loop	diagram
		and 1M for
	Data Next	any one
	HEAD \rightarrow Data Next \rightarrow Data Next	advantage
	A circular linked list can be either singly linked or doubly linked	
	The of th	
	• for singly linked list, next pointer of last item points to the first item	
	• In doubly linked list, prev pointer of first item points to last item as well.	
	We declare the structure for the circular linked list in the same way as follows:	
	Struct node	
	{	
	Int data;	
	Struct node *next;	
	};	
	Typedef struct node *Node;	
	Node *start = null;	
	Node *last = null;	
	For example:	

		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Advantages of Circular Linked Lists:	
		1) Any node can be a starting point. We can traverse the whole list by starting from any point. We just need to stop when the first visited node is visited again.	
		2) Useful for implementation of queue. Unlike this implementation, we don't need to maintain two pointers for front and rear if we use circular linked list. We can maintain a pointer to the last inserted node and front can always be obtained as next of last.	
		3) Circular lists are useful in applications to repeatedly go around the list. For example, when multiple applications are running on a PC, it is common for the operating system to put the running applications on a list and then to cycle through them, giving each of them a slice of time to execute, and then making them wait while the CPU is given to another application. It is convenient for the operating system to use a circular list so that when it reaches the end of the list it can cycle around to the front of the list.	
		4) Circular Doubly Linked Lists are used for implementation of advanced data structures like Fibonacci Heap.	
5		Attempt any TWO of the following :	12 M
5	a	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.	12 M 6 M
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.	12 M 6 M 3marks for
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]	12 M 6 M 3marks for Push algorithm
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]If stack_top is equal to max-1 then	12 M 6 M 3marks for Push algorithm and 3marks for Pop
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]If stack_top is equal to max-1 thenDisplay output as "Stack Overflow" and return to calling function	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]If stack_top is equal to max-1 thenDisplay output as "Stack Overflow" and return to calling functionOtherwise	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]If stack_top is equal to max-1 thenDisplay output as "Stack Overflow" and return to calling functionOtherwiseGo to step 2	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following : Write algorithm for performing push and pop operations on stack. Push algorithm: - Max is maximum size of stack. Step 1: [Check for stack full/ overflow] If stack_top is equal to max-1 then Display output as "Stack Overflow" and return to calling function Otherwise Go to step 2 Step 2: [Increment stack_top] Increment stack top pointer by one.	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following :Write algorithm for performing push and pop operations on stack.Push algorithm: - Max is maximum size of stack.Step 1: [Check for stack full/ overflow]If stack_top is equal to max-1 thenDisplay output as "Stack Overflow" and return to calling functionOtherwiseGo to step 2Step 2: [Increment stack_top] Increment stack top pointer by one.stack_top=stack_top +1;	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following : Write algorithm for performing push and pop operations on stack. Push algorithm: - Max is maximum size of stack. Step 1: [Check for stack full/ overflow] If stack_top is equal to max-1 then Display output as "Stack Overflow" and return to calling function Otherwise Go to step 2 Step 2: [Increment stack_top] Increment stack top pointer by one. stack_top=stack_top +1; Step 3: [Insert element] stack [stack_top] = item;	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following : Write algorithm for performing push and pop operations on stack. Push algorithm: - Max is maximum size of stack. Step 1: [Check for stack full/ overflow] If stack_top is equal to max-1 then Display output as "Stack Overflow" and return to calling function Otherwise Go to step 2 Step 2: [Increment stack_top] Increment stack top pointer by one. stack_top=stack_top +1; Step 3: [Insert element] stack [stack_top] = item; Step 4: return to calling function	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation
5	a Ans	Attempt any TWO of the following : Write algorithm for performing push and pop operations on stack. Push algorithm: - Max is maximum size of stack. Step 1: [Check for stack full/ overflow] If stack_top is equal to max-1 then Display output as "Stack Overflow" and return to calling function Otherwise Go to step 2 Step 2: [Increment stack_top] Increment stack top pointer by one. stack_top=stack_top +1; Step 3: [Insert element] stack [stack_top] = item; Step 4: return to calling function Pop algorithm: - Max is maximum size of stack.	12 M 6 M 3marks for Push algorithm and 3marks for Pop operation

 	If stack top is equal to -1 then						
	Display output as "Stack Underflow" and return to calling function						
	Otherwise						
	Go to step 2						
	Step 2: [delete element] stack [stack_top] = item;						
	Step 3: [Decrement stack_top] Decrement stack top pointer by one.						
	<pre>stack_top=stack_top -1;</pre>						
	Step 4: return to calling function.						
b	For given binary tree write in-order, pre-order and post-order traversal.	6 M					
	R R R R R R R R R R R R R R R R R R R						
 Ans	Inorder Traversal: Q,E,F,R,D,H,B,A,I,J,K,C,L,P	2marks for					
	Preorder Traversal: A,B,D,E,Q,F,R,H,C,I,J,K,L,P	each traversal					
	Postorder Traversal: Q,R,F,E,H,D,B,K,J,I,P,L,C,A						
c	Write an algorithm to insert an element at the beginning and end of linked list.	6 M					
Ans	Algorithm to insert an element at the beginning of linked list:	3marks for each					
	1. Start	algorithm					
	2. Create the node pointer *temp						
	Struct node * temp						
	3. Allocate address to temp using malloc						
	<pre>temp = malloc(sizeof(struct node));</pre>						
	4. Check whether temp is null, if null then						
	Display "Overflow"						
	else						

	temp-> info=data	
	temp-> next=start	
	5. Start=temp	
	6. stop	
	Algorithm to insert an element at the end of linked list:	
	1. Start	
	2. Create two node pointers *temp, *q	
	struct node * temp, *q;	
	3. q= start	
	4. Allocate address to temp using malloc	
	<pre>temp = malloc(sizeof(struct node));</pre>	
	5. Check whether temp is null, if null then	
	Display "Overflow"	
	else	
	temp-> info=data	
	temp-> next=null	
	6. While(q->next!=null)	
	q=q-> next	
	7. q->next= temp	
	8. stop	
	Attempt any TWO of the following :	12 M
a	Describe working of selection sort method. Also sort given input list in ascending order using selection sort input list:- 55, 25, 5, 15, 35.	6 M
Ans	Working of Selection sort : Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or Descending). In selection sort, the first element in the list is selected and it is compared repeatedly with remaining all the elements in the list. If any element is smaller than the selected element (for ascending order), then both are swapped. Then we select the element at second position in the list and it is compared with remaining all elements in the list. If any element is smaller than the selected element is smaller than the selected element as swapped. This procedure is repeated till the entire list is sorted.	3marks for description, 3marks for correct solution

b Define the term recursion. Write a program in C to display factorial of an entered number using recursion. 6 M Aus Definition: Recursion is the process of calling function by itself. A recursive function body contains function. 9 Marks for definition, 4 marks for definition, 4 marks for definition, 4 marks for definition, 5 marks for	 r		
b Define the term recursion. Write a program in C to display factorial of an entered number using recursion. 6 M Ans Definition: Recursion is the process of calling function by itself. A recursive function body contains function call statement that calls itself repeatedly. 2marks for definition, 4marks for correct program. Program: #include <conio.h> int fact(int n); void main() int fact(int n);</conio.h>		$-55 \ 25 \ 5 \ 15 \ 35$ Pass 1 $-55 \ 25 \ 5 \ 15 \ 35$ $-55 \ 25 \ 5 \ 15 \ 35$ $-55 \ 25 \ 5 \ 15 \ 35$ Pass 2 $-55 \ 25 \ 5 \ 15 \ 35$ Pass 2 $-55 \ 25 \ 5 \ 15 \ 35$ Pass 4 Pass	
b Define the term recursion. Write a program in C to display factorial of an entered number using recursion. 6 M Ans Definition: Recursion is the process of calling function by itself. A recursive function body contains function call statement that calls itself repeatedly. 2marks for definition, 4marks for correct program. #include <stdio.h> #include<stdio.h> int fact(int n); void main() 1</stdio.h></stdio.h>		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
b Define the term recursion. Write a program in C to display factorial of an entered number using recursion. 6 M Ans Definition: Recursion is the process of calling function by itself. A recursive function body contains function call statement that calls itself repeatedly. 2marks for definition, 4marks for correct program #include <stdio.h> #include<conio.h> int fact(int n); void main()</conio.h></stdio.h>		-55 5 15 25 35 -55 5 15 25 35 -55 5 15 25 35	
b Define the term recursion. Write a program in C to display factorial of an entered number using recursion. 6 M Ans Definition: Recursion is the process of calling function by itself. A recursive function body contains function call statement that calls itself repeatedly. 2marks for definition, 4marks for correct program: #include <stdio.h> #include<conio.h> int fact(int n); void main()</conio.h></stdio.h>		Sorted Array [-55] 5 15 25 35	
Ans Definition: Recursion is the process of calling function by itself. A recursive function body contains function call statement that calls itself repeatedly. 2marks for definition, 4marks for correct program. Program: #include <stdio.h> #include<conio.h> program. #include<conio.h> int fact(int n); void main() Image: Conio.h</conio.h></conio.h></stdio.h>	b	Define the term recursion. Write a program in C to display factorial of an entered number using recursion.	6 M
contains function call statement that calls itself repeatedly. definition, 4marks for correct Program: #include <stdio.h> #include<stdio.h> program #include<conio.h> int fact(int n); void main() unit</conio.h></stdio.h></stdio.h>	Ans	Definition: Recursion is the process of calling function by itself. A recursive function body	2marks for
Program: correct #include <stdio.h> program #include<conio.h> #include<conio.h> int fact(int n); void main()</conio.h></conio.h></stdio.h>		contains function call statement that calls itself repeatedly.	definition, 4marks for
#include <stdio.h> program #include<conio.h> int fact(int n); void main() void main()</conio.h></stdio.h>		Program:	correct
<pre>#include<conio.h> int fact(int n); void main()</conio.h></pre>		#include <stdio.h></stdio.h>	program
int fact(int n); void main()		#include <conio.h></conio.h>	
void main()		int fact(int n);	
		void main()	

	{	
	int n;	
	clrscr();	
	<pre>printf("\nThe factorial of % is = %d",n,fact(n));</pre>	
	getch();	
	}	
	int fact(int n)	
	{	
	if(n==1)	
	return 1;	
	else	
	return(n*fact(n-1));	
	}	
c	Describe procedure to delete an element from singly linked list using diagram.	6 M
Ans	In a linear linked list, a node can be deleted from the beginning of list, from in between	**Note:
	Positions and from end of the list.	algorithm
	Delete a node from the beginning:-	or program shall be
		considered.
	Istart J 77	Any two deletions
	AXB-XCNULL	shall be
	Model Node 2 Mode 3	considered
	Node to be deleted is node1 Create a temporary node as 'temp'. Set 'temp' node with the	3marks each
	address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp' pointer with free function. Deleting temp pointer deletes the first node from the list.	
	OR	
	Step 1: Create temporary node 'temp'.	
	Step 2: Assign address of first node to 'temp' pointer.	
	Step 3: Store address of second node (temp->next) in header pointer 'start'.	
	Step 4: Free temp.	
	Delete a node from in between position:-	

Node to be deleted is node3.Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.

OR

Step 1: Create temporary node 'temp', 'q'.

Step 2: Assign address of first node to 'temp' pointer.

Step 3: Traverse list up to previous node of node to be deleted.

Step 4: Mark the node to be deleted 'q'.

Step 5: Store address from node 'q' in address field of 'temp' node (temp->next=q->next).

Step 6: Free q.

Delete a node from the end:-

Node to be deleted is node 3.Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.

OR

Step 1: Create temporary node 'temp','q'.
Step 2: Assign address of first node to 'temp' pointer.
Step 3: Traverse list upto second last node.
Step 4: Mark last node's address in node 'q'.
Step 5: store NULL value in address field of second last node (temp->next).
Step 6: Free q

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	(a)	List any four operations on data structure.	2M
	Ans.	Operations on data structure:	
		• Insertion	Any
		Deletion	four
		• Searching	operatio
		• Sorting	ns ^{1/2} M
		• Traversing	each
		Merging	
	(b)	Enlist queue operation condition.	2M
	Ans.		
		1. Queue Full	Two
		2. Queue Empty	operatio
			nal
			conditio
			ns 1M
			each

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

(c)	Define:				2M		
	(i) Binary tree (ii) Binary search tree						
Ans.	(i) Binary tree : It is a nonlinear data structure in which each non-leaf						
	node can have maxir	num two ch	ild nodes as le	eft child ad right child.	correct		
					definitio		
	(ii)Binary search tr	ee: It is a no	onlinear data s	tructure in which left	n 1M		
	child of root node is less than root and right child of root node is						
	greater than root.						
(d)	Show the memory	representa	tion of stack	using array with the	2M		
	help of a diagram.						
Ans.	Consider stack cont	tains five in	nteger elemer	nts represented with an			
	array A in which each	ch element	occupy 2 byte	es memory. Array starts			
	with base address of	2000.					
		Index		Memory	Correct		
		position		location	represen		
	+00	+		l ↓	tation		
	$top \longrightarrow$	A[4]	E	2006	<i>2M</i>		
		A[3]	D	2005			
		A[2]	С	2004			
		A[1]	В	2002			
		A[0]	A	2000			
			Stack				
(e)	Define given two ty	pes of grap	h and give ex	ample.	2M		
	(i) Direct graph (ii) Undirect	ted graph	1			
Ans.	(i) Direct graph: A	graph in wh	nich direction	is associated with each			
	edge is known as dir	ected graph.					
	Example:						
	-		Edge		Definitio		
	No	de ′	/		n with		
	A)	¥•(в	example		
	\uparrow				of		
				Ļ	each1M		
	D).	(c)			

Subject: Data Structure Using 'C'

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

	(ii) Undirected graph: A graph in which the edges do not have any direction associated with them is known as undirected graph. Example:-				
(f)	Differ	entiate between linear and	non-linear data structures on	2M	
	any tw	vo parameters.			
Ans.	Sr.	Linear data structure	Non-linear data structure		
	1 1 2 3	A data structure in which all data elements are stored in a sequence is known as linear data structure. All elements are stored in contiguous memory locations inside memory. Example:- stack, queue	A data structure in which all data elements are not stored in a sequence is known as non-linear data structure. All elements may stored in non-contiguous memory locations inside memory. Example:- tree, graph	Any two differen ces 1M each	
(g) Ans.	Conve stack	ert the following infix expres	ssion to its prefix form using	2M	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

		*	D 101	Cite 1 and the	D. C. D.	
		Infix Expression	Read Character	Stack contents	Prefix Expression	
		A+B-C*D/E+F	r		1	
		A+B-C*D/E+	+	+	r	
		A+B-C*D/E	E	+	EF	
		A+B-C*D/	/	/ +	EF	
		A+B-C*D	D	/ +	DEF	Correct prefix expressi
		A+B-C*	*	*	/DEF	on2M
		A+B-C	С	*	C/DEF	
		A+B-	-		+*C/DEF	
		A+B	В	-	B+*C/DEF	
		A+	+	+	-B+*C/DEF	
		A	А	+	A-B+*C/DEF	
					+A-B+*C/DEF	
2.		Attempt any TI	HREE of the	following:		12
	(9)	Evolain the wor	rking of Ring	ry soarch with	an avamnla	4M
	(a)	Dinger agent	ranformed a	ily scarch with	an champic.	
	Ans.	binary search is	performed of	ny on sorted an	ay. Search method	starts
		with calculating	mid position	n from an arra	y and compare the	e mid
		position element	t with the sea	rch element. If	a match is found th	ienthe
		search process e	nds otherwise	e divide the i/p l	ist into 2 parts. Firs	st part
		contains all the	numbers less	than mid posit	ion element and s	econd <i>Explana</i>
		part contains all	the numbers	greater than mi	d position element	t.Then <i>tion 2M</i>
		select one of the	e part depend	ing on search e	lement is less or g	greater
		than mid positi	on element a	ind calculate m	id position for se	lected
		part.Again com	pare mid post	ition element w	vith search element	t. The
		binary search pe	erforms com	parison and divi	sion task the elem	nent is
		found or division	n of list gives	one element for	comparison.	
		To calculate mid	l element perf	form (lower + u	(pper)/2.	
		lower-lower inde	ex position of	an array(initial	ly 0)	
		upper-upper inde	ex position of	an array(initial	ly size-1)	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

	{	
	int info;	
	struct node *next;	
	}*start=NULL;	
	void main()	
	{	
	int m;	
	clrscr();	
	<pre>printf("enter data value\n");</pre>	
	scanf("%d",&m);	
	create_list(m);	
	printf("enter data value\n");	
	scanf("%d",&m);	
	addatbeg(m);	
	display();	
	getch();	
	}	
	void create_list(int data)	
	{	
	struct node *tmp,*q;	
	tmp=malloc(sizeof(struct node));	
	tmp->info=data;	
	tmp->next=NULL;	
	start=tmp;	
	}	
	void addatbeg(int data)	
	{	
	struct node *tmp;	
	tmp=malloc(sizeof(struct node));	
	tmp->info=data;	
	tmp->next=start;	
	start=tmp;	
	}	
	void display()	
	{	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	<pre>struct node *q; if(start==NULL) { printf("list is empty\n"); } q=start; printf("list is:\n"); while(q!=NULL) { printf("%d\t",q->info); q=q->next; }</pre>	
(c)	<i>}</i> Draw and explain construction of circular queue.	4 M
Ans.	A queue, in which the last node is connected back to the first node to	
	form a cycle, is called as circular queue.	
	7 0 Front	
	6 10 1	
		Draw 1M
	Rear 4 3	
	The above diagram represents a circular queue using array.	
	It has rear pointer to insert an element and front pointer to delete an	
	element. It works in FIFO manner where first inserted element is deleted first	Explana
	Initially front and rear both are initialized to -1 to represent queue empty. First element inserted in circular queue is stored at 0 th index	uon 514
	position pointed by rear pointer. For the very first element, front	
	pointer is also set to 0 th position. Whenever a new element is inserted in a queue rear pointer is incremented by one. If rear is pointing to	
	max-1 and no element is present at 0^{th} position then rear is set to 0^{th}	
	position to continue cycle. Before inserting an element, queue full	
	0 then queue is full. Otherwise if rear =front+1 then also queue is full.	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

-			
		If queue is full then new element cannot be added in a queue.	
		For deletion, front pointer position is checked and queue empty	
		condition is checked. If front pointer is pointing to -1 then queue is	
		empty and deletion operation cannot be performed. If queue contains	
		any element then front pointer is incremented by one to remove an	
		element. If front pointer is pointing to max-1 and element is present at	
		0 position then front pointer is initialize to 0 position to continue	
		cycle. Circular quanta has advantage of utilization of space. Circular quanta is	
		full only when there is no empty position in a queue. Refere inserting	
		an element in circular queue front and rear both the pointers are	
		an element in circular queue nont and rear boun the pointers are abacked. So if it indicates any ampty space anywhere in a gueue then	
		insertion takes place	
	(d)	Explain indegree and outdegree of a graph with example	4M
	Ans	Indegree of node: It is number of edges coming towards a specified	- ₹₹₹
	1 111,50	node i.e. number of edges that have that specified node as the head is	Each
		known as indegree of a node.	term-
			explanat
		Outdegree of node: It is number of edged going out from a specified	ion 1M
		node i.e. number of edges that have that specified node as the tail is	
		known as outdegree of a node	
		In undirected graph each edge is bidirectional so each edge coming	
		towards node is also going out of that node. Due to this indegree and	
		outdegree of a node is same number. In indirected graph, each edge is	
		having direction associated with it, so indegree and outdegree	
		depends on the direction.	
		Example:-	
		В	
			Each
		(\mathbf{A}) (\mathbf{C})	examnle
			IM
		$(E) \longleftrightarrow (D)$	
		Indegree of node $A=1$ Outdegree of node $A=2$	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Data	Structure Using 'C' Subject Code: 22	2317
		Indegree of node $B=3$ Outdegree of node $B=2$	
		Indegree of node $C=2$ Outdegree of node $C=1$	
		Indegree of node $D=1$ Outdegree of node $D=3$	
		Indegree of node $E=2$ Outdegree of node $E=1$	
3.	(a) Ans.	Attempt any THREE of the following: Write C program for performing following operations on array: insertion, display. #include <stdio.h> #include<conio.h> void main() { inta[10],x,i,n,pos; clrscr(); printf("Enter the number of array element\n"); scanf("%d",&n); printf("Enter the array with %d element\n", n); for(i=0;i<n;i++) scanf("%d",&a[i]); printf("Enter the key value and its position\n"); scanf("%d%d",&x,&pos); for(i=n; i >= pos; i) { a[i]=a[i-1]; } a[pos-1]=x; printf("Array element\n ");</n;i++) </conio.h></stdio.h>	12 4M <i>Correct</i> program 4M
		print("Array element\n"); for(i=0;i <n+1;i++) printf("%d\t",a[i]); getch(); }</n+1;i++) 	
	(b) Ans.	Evaluate the following postfix expression: 5, 6, 2, +, *, 12, 4, /, - Show diagrammatically each step of evolution using stack.	4M

Г

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

	Scanned	Of	erand	11	Ope	rand	2	Va	lue	Stac	k			
	5									5	em	-		
	5									56		-		Correct
	0									3,0 5.6 °)	-		answar
	<u>∠</u>	6			2			0		J,0,4		-		answer AM
	+	0			2			8		3,8				7171
	*	Э			8			40		40	<u> </u>			
	12									40,1	2			
	4	10			4			2		40,1	2,4	-		
	/	12			4			3		40,3		-		
	-	40			3			37		37				
	Result of a	ibov	e pos	tfix	expr	essio	n e	evalu	iatio	on- 37				
(c)	Sort the fo	ollov	ving	nun	ibers	in a	ISCE	endi	ng o	rder	using	g quic	k sort.	4 M
	Given nun	nbei	s 50,	2,6	, 22,	3, 39	, 49	9, 25	, 18,	, 5.				
Ans.	Given array	у												
	Array elements	50	2	6	22	2 3	3	39	49	25	18	3 5		Correct
	indexes	0	1	2	3	4	ŀ	5	6	7	8	9		solve
	Set l=0, h=	=9 ,p	oivot=	a[h]=5									example 4M
	Initialize in	Idex	of sn	nalle	er elei	ment,	, i=	l-1	=-1					
	Traverse el	eme	nts fr	om	j=l to	j=h-	1							
	1. j=0 i=-	1 sir	ice a[j] >	pivot	do n	oth	ing	array	/ will	rema	in sam	e	
	Array													
	elements	50	2		6 2	22	3	39	49	25	18	3 5	_	
	indexes	0	1		2	3 4	4	5	6	7	8	9		
	2. j=1 sir	nce a	ו[i]<=	pivo	ot, do	i++ ;	and	l swa	ap(a[i], a[i	1)			
	i=0		v -	-						L	-			
	Array			_	• -	-	-		10		4.5	_]	
	elements	2	50	6	22	3	3	9	49	25	18	5	-	
	indexes	0	1	2	3	4	-	5	6	7	8	9		

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Array										
elements	2	5() (5 2	2 3	39	49	25	5 18	3
indexes	0	1	2	2 3	3 4	5	6	7	8	
4. j=3 ,i=0	since	a[j]	> pi	vot d	o noth	ing ar	ray w	ill ren	nain s	ame
Array elements	2	50	6	22	3	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9
elements	2	3	6	22	50	39	49	25	18	5
elements										
indexes	0	1	2	3	Δ	5	6	7	8	C
indexes	0	1	2	3	4	5	6	7	8	9
indexes 6. j=5 , i=1 Array elements	0 since 2	1 e a[j] 3	2]>p	3 ivot c 22	4 lo noth 50	5 ning at 39	6 rray v 49	7 vill ren 25	8 main : 18	sam
indexes 6. j=5 , i=1 Array elements indexes	0 since 2 0	1 e a[j] 3 1	2] > p 6 2	3 ivot c 22 3	4 lo noth 50 4	5 ning a 39 5	6 rray v 49 6	7 vill ren 25 7	8 main = 18 8	9 sam 5 9
indexes 6. j=5 , i=1 Array elements indexes 7. j=6, i=1 Array	0 since 2 0 since 2	1 e a[j] 3 1 e a[j]	2] > p 6 2] > p 6	3 ivot c 22 3 ivot c	4 lo noth 50 4 lo noth 50	5 ning a 39 5 ning a 39	6 rray v 49 6 rray v 49	7 vill ren 25 7 vill ren 25	8 main = 18 8 main =	sam
indexes 6. j=5 , i=1 Array elements indexes 7. j=6, i=1 Array elements	0 since 2 0 since 2	1 3 1 3	2] > p 6 2] > p 6	3 ivot c 22 3 ivot c 22	4 lo noth 50 4 lo noth 50	5 ning at 39 5 ning at 39	6 rray v 49 6 rray v 49	7 vill ren 25 7 vill ren 25	8 main = 18 8 18	sam 5 9 sam
indexes 6. j=5 , i=1 Array elements indexes 7. j=6, i=1 Array elements indexes	0 since 2 0 since 2 0	1 3 1 3 1 3 1	2] > p 6 2] > p 6 2	3 ivot c 22 3 ivot c 22 3	4 lo noth 50 4 lo noth 50 4	5 ning a 39 5 ning a 39 5	6 rray v 49 6 rray v 49 6	7 vill ren 25 7 vill ren 25 7	8 main = 18 8 main = 18 8	sam 5 9 5 5
indexes 6. j=5 , i=1 Array elements indexes 7. j=6, i=1 Array elements indexes 8. j=7 ,i-1	0 since 2 0 since 2 0 since 2 0	1 3 1 3 1 2 2 2 2 3 1 2 2 2 3 1 2 2 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 3 3 1 3 3 3 1 3 3 3 3	2] > p 6 2] > p 6 2 i] > 1	3 ivot c 22 3 ivot c 22 3	4 lo noth 50 4 lo noth 50 4 do not	5 ning at 39 5 ning at 39 5 hing a	6 rray v 49 6 rray v 49 6 array	7 vill ren 25 7 vill ren 25 7 will ren	8 main s 18 8 main s 18 8	sam 5 9 sam 5 sam
indexes 6. j=5 , i=1 Array elements indexes 7. j=6, i=1 Array elements indexes 8. j=7 ,i-1 Array elements	0 since 2 0 since 2 0 since 2 2	1 3 1 3 1 2 2 3 3 3	2 > p 6 2 2 2 2 2 2 2 2 2	3 ivot c 22 3 ivot c 22 3 pivot c 22	4 lo noth 50 4 lo noth 50 4 do not	5 ning at 39 5 ning at 39 5 hing a 39	6 rray v 49 6 rray v 49 6 array 49	7 vill ren 25 7 vill ren 25 7 will ren 25	8 main = 18 8 main = 18 8 emain 18	sam 5 9 sam 5 5

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

elements	2	3	6	22	50	39	49	25	18	5
indexes	0	1	2	3	4	5	6	7	8	9
We come of Finally we a[h] (or pi a[] = Now, 5 is a and all eler Similarly r following of Output of p Array	out of pla vot) {2,3, t its nents rest of pass1	f loc ce p 5,22 corr s gro of t it	pp be vivot 2,50,7 rect p eater he pa	cause at co 39,49 lace. than asses	j is no rrect ,25,18 All elo 5 are a will	ow eq positi ,6} // ement afterit. be exc	ual to fon by 6 and s sma ecuted	high-1 y swap 5 Swa ller tha 1 and	pped an 5 ar will p	n[i+1] e befo rovide
elements	2	3	5	22	50	39	49	25	18	6
macxes	U	1	2	5	1 -	5	0	,	0	
A[]={2,3} Array elements indexes		2 0	5 10	3	5 2					
$A[]=\{2,3\}$ Array elements indexes $a[]=\{22,50$ Array	,39,4	$\frac{t=3}{2}$	5,18,	3 1 6}piv	5 2 2 2 00t=6					
A[]={2,3} Array elements indexes a[]={22,50 Array elements	,39,4 6	$\frac{1=3}{2}$	5,18, 50	3 1 6}piv 39	5 2 2 49	25	18	22		
A[]={2,3} Array elements indexes a[]={22,50 Array elements indexes	,39,4 6 3	2 0 9,2	5,18, 50 4	3 1 6}piv 39 5	5 2 cot=6 49 6	25	18 8	22 9		
$A[]=\{2,3\}$ Array elements indexes $a[]=\{22,50$ Array elements indexes $a[]=\{50,39$,39,4 6 3 ,49,2	$\frac{1}{2}$	5,18, 50 4 8,22	3 1 6}piv 39 5 }pivot	5 2 2 5 5 2 7 0 5 6 4 9 6	25 7	18 8	22 9		
$A[]=\{2,3\}$ Array elements indexes $a[]=\{22,50$ Array elements indexes $a[]=\{50,39$ Array elements	,39,4 6 3 ,49,2	2 0 19,2 25,1 8	5,18, 50 4 8,22	3 1 6}piv 39 5 }pivot 22	$\begin{array}{c c} & 5 \\ \hline 2 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 6 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 2 \\ 2 \\$	25 7	18 8 25	22 9	60	39

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	a[]={18}pi	vot=	18								
	Array elements	1	8	22							
	indexes	Z	1	5							
	a[]={49,25	,50,3	9},p	ivot=3	9						
	Array elements	2	5	39		50	4	9			
	indexes	(5	7		8	9)			
	$a[]=\{25\}, p$	oivot=	=25								
	elements	2	5	39							
	indexes	6	5	7							
	a[]={50.49	}.niv	ot=4	.9							
	Array	<u>, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	0	50							
	elements	+	.,	50							
	indexes	5	3	9							
	Final sorte	d ar	ray i	using	quick	sort v	vill be				
	Array elements	2	3	5 6	18	22	25	39	49	50	
	indexes	0	1	2 3	4	5	6	7	8	9	
(b)	From the f	allas	vino	oranl	1 com	nlete	the ar	iswer	·C•		4 M
(u)	r tom the r	0110 1	, mg	Stapt	i, con			13	(S.		
			0	_	·	-9					
		1	UE	000000	-	1		terie.v			
	holida (/		1	1	5	Tepp				
	(1)	2)—	•	→19				145			
			6			31) • • • • • •				
	1 A A		6	iquqg be							
	(i) Indegr	ree of	f nod	le 21							
	(ii) Adjace	ent n	ode	of 19							

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

		(iii) Pa (iv) Su	ath of 31 accessor of node 67		
	Ans.	(i) Ind	egree of node 21: node 1, 7, 19		
		(i1) A	djacent node of 19: node 1,21		Fach
		(iii) Pa	th of 31:		correct
		~ /	Path1: 1-21-31		answer
			Path2: 1-7-21-31		<i>1M</i>
			Path3: 1-7-21-31		
		(1V) St	iccessor of node 6/: No Succes	sor of node 6/ since it is	
		180	blated node of not connected no	de în node.	
4.		Attem	pt any THREE of the followi	ng:	12
	(a)	Differ	entiate between binary search	h and sequential search (linear	4 M
		search	n).	-	
	Ans.		I		
		Sr.	Binary Search	Sequential search (linear	
		<u>No.</u>		search)	Any
			in Binary Soarah	Input data need not to be	jour noints
		2	In contrast binary search	A linear search scans one	1M each
		2	compares key value with the	item at a time, without	1111 Cuch
			middle element of an array	iumping to any item.	
			and if comparison is	J	
			unsuccessful then cuts down		
			search to half.		
		3	Binary search implements	Linear search uses sequential	
			divide and conquer	approach.	
			approach.	In the second star and	
		4	In binary search the worst	In linear search, the worst	
1			case complexity is O(log n)	case complexity is O(n)	
			case complexity is O(log n)	case complexity is O(n),	
		5	case complexity is O(log n) comparisons. Binary search is efficient for	case complexity is O(n), comparisons. Linear search is efficient for	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data	a Structure Using 'C' Subject Code: 22	317
(b) Ans.	Draw the tree structure of the following expressions: (i) $(2a+5b)^3 * (x-7y)^4$ (ii) $(a-3b) * (2x-y)^3$ (i) $(2a+5b)^3 * (x-7y)^4$	4M
		Each correct tree structur e 2M
	(ii) $(a - 3b) * (2x - y)^3$	
(c) Ans.	Create a singly linked list using data fields 15, 20, 22, 58, 60. Search a node 22 from the SLL and show procedure step-by-step with the help of diagram from start to end.	4M

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Subject Code:

22317

٦

		Scanned	Operand 1	Operand 2	Value	Stack]	
		Symbol	1	1		Content		
		5				5		Each
		2				5,2		correct
		3				5,2,3		step 1M
		4				5,2,3,4		
		+	4	3	12	5,2,12		
		*	12	2	24	5,24		
		-	24	5	19	19		
						L	-	
		Result of a	bove prefix e	xpression eva	luation -	- 19		
	(e)	Write an	algorithm t	o delete a n	node fro	m the beginni	ing of a	4M
		circular li	nked list.			_	_	
	Ans.							
		Algorithm	to delete a	a node from	n the bo	eginning of a	circular	
		linked list						
		Consider the	ne function de	elatbeg()				
		1. Start						Correct
		2. Declar	e struct node	*tmp,*q;				algorith
		3. Set $q=1$	ast->link;					m 4M
		4. While	(q! = last)					
		Do			1 0		.т.,	
		tmp = 0	$\frac{1}{10}$; // Identifi	les beginning	node of	Circular Linked	L1St	
		last->11	nK = q - > linK;	// Set the	address	field before	deleting	
		free(tr		// Dalata tha k	aainnin	anodo		
		End of	While		Jeginnin	g lioue		
		5 last-N	III · // Set]	last- NI II I i	f only o	ne node is prese	ont in the	
		J. last=IV	or Linked List	ast - NOLL I	I OIII y OI	lie node is prese	in in the	
		6 End of	function	-				
5		Attempt a	ny TWO of 1	the following	•			12
	(a)	Show the	effect of PI	SH and PO	,. Ponera	tion on to the	stack of	6M
	(4)	size 10. Th	ne stack conf	ains $40, 30, 4$	52. 86. 3	9. 45. 50 with	50 heing	0171
		at top of t	he stack. Sho	w diagramm	natically	the effect of:	oo being	
		(i) PUSE	[59 (ii) PUSH 85	y			
		(iii) POP		(iv) POP				
		(v) PUSE	[59 (vi) POP				
		Sketch th	e final struc	ture of stac	k after	performing th	e above	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

Г

٦

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subj	ject: Data	Structure Using 'C' Subject Code: 22	317	
	(c) Ans.	Write an algorithm to count number of nodes in singly linked list. Let start is pointer variable which always stores address of first node in single linked list. If single linked list is empty then start will point to NULL. q is pointer variable used to store address of nodes in single linked list. Step 1: Start Step 2: [Assign starting address of single linked list to pointer q] q=start Step 3: [Initially set count of nodes in Linked list as zero] count=0 Step 4: [Check if Linked list empty or not] if start==NULL Display "Empty Linked List" go to step 6. Step 5: [Count number of nodes in single linked list] while q!=NULL count++ and q=q->next; Step 6: Display count (total number of nodes in single linked list) Step 7: stop	6M Corre algori m 6N	ct th 1
6.	(a) Ans.	Attempt any TWO of the following: Sort the following numbers in ascending order using Bubble sort. Given numbers: 29, 35, 3, 8, 11, 15, 56, 12, 1, 4, 85, 5 & write the output after each interaction. Pass 1Enter no of elements :12Enter array elements :29 35 3 8 11 15 56 12 1 4 85 5Unsorted Data: 29 35 3 8 11 15 56 12 1 4 85 5	12 6M	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	After pass 1 : After pass 1 :	29 29 29 29 29 29 29 29 29 29 29 29	35 3 3 3 3 3 3 3 3 3 3 3 3	3 35 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 35 11 11 11 11 11 11 11 11	11 11 35 15 15 15 15 15 15 15 15 15	15 15 15 35 35 35 35 35 35 35 35 35	56 56 56 56 56 12 12 12 12 12 12	12 12 12 12 12 12 12 12 12 12 12 12 12 1	$ \begin{array}{c} 1 \\ 4 \\ $	4 4 4 4 4 4 4 4 56 56 56	85 85 85 85 85 85 85 85 85 85 85 5	5 5 5 5 5 5 5 5 5 5 5 5 5 8 5 8 5	Correct passes 6M (For 4 passes 3M shall be awarded)
	After pass 2 : After pass 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	29 8 8 8 8 8 8 8 8 8 8 8 8	8 <u>29</u> 11 11 11 11 11 11 11 11 11	11 11 29 15 15 15 15 15 15 15 15	15 15 29 29 29 29 29 29 29 29 29	35 35 35 <u>35</u> 12 12 12 12 12 12 12	12 12 12 12 12 12 12 12 12 12 11 1 1	1 1 1 1 1 35 4 4 4	4 4 4 4 4 4 35 35 35	56 56 56 56 56 56 56 56 56 56	5 5 5 5 5 5 5 5 5 5 5 5 6	85 85 85 85 85 85 85 85 85 85	
	After pass 3 : After pass 3 : Pass 4	3 3 3 3 3 3 3 3 3 3 3 3	8 8 8 8 8 8 8 8 8 8	11 11 11 11 11 11 11 11 11	15 15 15 15 15 15 15 15	29 29 29 12 12 12 12 12 12	12 12 12 12 <u>29</u> 1 1 1 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 29 \\ 4 \\ 4 \\ 4 \end{array} $	4 4 4 4 4 29 29 29	35 35 35 35 35 35 35 35 35 5	5 5 5 5 5 5 5 5 5 35	56 56 56 56 56 56 56	85 85 85 85 85 85 85 85	
	After pass 4 : After pass 4 : After pass 4 : After pass 4 :	3 3 3 3	8 8 8 8	11 11 11 11	15 15 <u>15</u> 12	12 12 12 15	1 1 1 1	4 4 4 4	29 29 29 29 29	5 5 5 5	35 35 35 35	56 56 56 56	85 85 85 85	

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	After pass 4 :	3	8	11	12	1	15	4	29	5	35	56	85		
	After pass 4 :	3	8	11	12	1	4	15	29	5	35	56	85		
	After pass 4 :	3	8	11	12	1	4	15	<u>29</u>	5	35	56	85		
	After pass 4 :	3	8	11	12	1	4	15	5	<u>29</u>	35	56	85		
	•														
	Pass 5														
	After pass 5 :	3	8	11	12	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	12	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	<u>12</u>	1	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1	<u>12</u>	4	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1	4	<u>12</u>	15	5	29	35	56	85		
	After pass 5 :	3	8	11	1	4	12	<u>15</u>	5	29	35	56	85		
	After pass 5 :	3	8	11	1	4	12	5	<u>15</u>	29	35	56	85		
	Pass 6														
	After pass 6 :	3	8	11	1	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	<u>11</u>	1	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	1	<u>11</u>	4	12	5	15	29	35	56	85		
	After pass 6 :	3	8	1	4	<u>11</u>	12	5	15	29	35	56	85		
	After pass 6 :	3	8	1	4	11	<u>12</u>	5	15	29	35	56	85		
	After pass 6 :	3	8	1	4	11	5	<u>12</u>	15	29	35	56	85		
	D 7														
	Pass /														
	A. C	2	0	1	4	11	_	10	15	20	25	50	05		
	After pass 7 :	3	8 1	1	4	11	5	12	15	29	33 25	50 50	85		
	After pass 7 :	3	1	8	4	11	ב ב	12	15	29	33 25	50 56	83 95		
	After pass 7 :	3	1	4	8	11	5	12	15	29	33 25	50 56	83 05		
	After pass 7 :	3	1	4	8	<u></u>) 11	12	15	29	33 25	50 56	83 05		
	After pass 7 :	3	1	4	ð	3	<u>11</u>	12	15	29	33	30	85		
	Dass 8														
	F 488 0														
	Λ fter pass 12 ·	1	3	1	8	5	11	12	15	20) 35	56	85		
	Alter pass 12.	Ŧ	5	4	0	5	11	14	15	20	, 55	50	05		
	Santad alaman	• • •	0.140	. 1	2	4	0	51	1 1	2	15	1 0 - 2		C 05	
	soi teu elemen	115 8	art	1	3	4	0	5 1	1 1	4	1.5 4	27 2	55 30	5 05	
(b)	Evolucto the 4	Fall.	0.1.1	ina	noc	tf:	0.575	mag	aior						 6M
(U)		UII	UW	mg	hoa	UIX	ex	nes	5101	l.					UIVI
	3/+02-*														
Ans.															

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

	Symbols to		S	TAC	ζ		Expression		
	be scanned	4	3	2	1	0	Evaluation		
							and Result		
	5					5			Correct
	7				7	5			evaluati
	+					12	7+5=12		ve 6M
	6				6	12			
	2			2	6	12	6-2=4		
	-				4	12			
	*					48	12*4		
(c)	Create a sing Search a nod with the help	gly lin e 40 fr of dia	ked li com th gram	ist us ne SLl from	ing da L and start t	ata fio show o end	elds 90, 25, 4 procedure ste	6, 39, 56. ep-by-step	6M
Ans.	To Search a da data field from ORIGINAL I	ata fiel 1 first 1 L IST:	d in si 10de o	ngly l f sing	inked l ly link	ist, ne ed list	eed to start sear	ching the	
	start 90	→ 25	₽	→ 40	5	→ 39	9 - > 56	⊡₁ ≟	List creation 1M
	SEARCHING STEP 1: Compare 40 w 40!=90,	A NC	DDE						

SUMMER – 2019 EXAMINATION MODEL ANSWER

Subject: Data Structure Using 'C'

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

Winter – 19 EXAMINATION

Subject Name: Data Structure Using 'C' Model Answer

Subject Code: 22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	Ν.		
1.		Attempt any Five of the following:	10M
	а	Write any four operations that can be performed on data structure.	2M
	Ans	1. Data structure operations (Non Primitive)	2 M for any 4
		2. Inserting: Adding a new data in the data structure is referred as insertion.	Operation
		3. Deleting: Removing a data from the data structure is referred as deletion.	
		4. Sorting: Arranging the data in some logical order (ascending or descending, numerically or alphabetically).	
		5. Searching: Finding the location of data within the data structure which satisfy the searching condition.	
		6. Traversing: Accessing each data exactly once in the data structure so that each data item is traversed or visited.	
		7. Merging: Combining the data of two different sorted files into a single sorted file.	
		8. Copying: Copying the contents of one data structure to another.	
		9. Concatenation: Combining the data from two or more data	
		structure.	
		OR	

	Data structure operations (Primitive)	
	1. Creation: To create new Data Structure	
	2. Destroy: To delete Data Structure	
	3. Selection: To access (select) data from the data structure	
	4. Updating: To edit or change the data within the data structure.	
b	Define the term overflow and underflow with respect to stack.	2M
Ans	Stack overflow: When a stack is full and push operation is performed to	1 M for stack
	insert a new element, stack is said to be in overflow state.	overflow
	Max = 4 $Max = 4$	and 1M for
		stack
	3 D Kstarktop 3 D K stacktop	undernow
	2 <u>C</u> 2 <u>C</u>	
	Stack Full Push E	
	stack Overflow state.	
	Stack underflow: When there is no element in a stack (stack empty) and	
	pop operation is called then stack is said to underflow state	
	pop oporation is called then stack is said to anderito w state.	
	Max=4 Max=4	
	3 3	
	2 2	
	1	
	O D	
	-1 Estar.pp -1 DOD Estack.top	
	Stack Empty.	
	'/ Stack undertow state.	
С	Define the following term w.r.t. tree: (i) In-degree (ii) out-degree.	2M
Ans	In -degree: Number of edges coming towards node is in-degree of node.	1 M for each
	For e.g.: In degree of node B is 1	correct
		definition
	Out -degree: Number of edges going out from node is out -degree of node.	
	For e.g. Out Degree of is node D is 2	

	H		A B E	C F G		
d	Evaluate the following notation: P : 4, 2, ^, 3,	arithi *,3,-,8	metic expre 3,4 ,/,+	ession P wr	itten in postfix	2M
ns		Sr. No.	Symbol Scanner	STACK		2 M for correct answer
		1	4	4		
		2	2	4, 2	-	
		3	٨	16	-	
		4	3	16, 3		
		5	*	48		
		6	3	48,3	_	
		7	-	45	_	
		8	8	45,8		
		9	4	45,8,4		
		10	/	45,2		
		11	+	47		

е	Describe directed and undirected graph.	2M
Ans	Direct Graph: A directed graph is defined as the set of ordered pair of vertices and edges where each connected edge has assigned a direction . $V_1 \\ V_2 \\ V_2 \\ V_4 \\$	1M for each definition with diagram
f	Give classification of data structure.	2M
Ans	Data Structure Primitive Data Structure Integer Float Character Pointer Arrays Lists Files Linear Lists Non-Linear Lists Stacks Queues Graphs Trees	2 M for diagram
g	Define queue. State any two applications where queue is used.	2M
Ans	A Queue is an ordered collection of items. It has two ends, front and rear. Front end is used to delete element from queue. Rear end is used to insert an element in queue. Queue has two ends; the element entered first in the queue is removed first from the queue. So it is called as FIFO list.	1M for definition, 1M for applications (any two)

		Front											
		APPLI 1. Rou queues	[CATI und Ro	ONS O bin Teo	OF QUI	EUES e for p	rocesso	r schec	luling	is impl	emente	d using	
		2. All softwar	types re's are	of cus design	tomer ed usir	service ng queu	e (like les to st	railwa ore cus	y ticke tomer'	et reser s inform	vation) nation.	center	
		3. Prin share a is conn to the s accordi											
2.		Attempt any Three of the following:									12M		
	а	Sort the given number in ascending order using Radix sort: 348, 14, 641, 3851, 74.										4M	
	Ans	Pass 1											4 M for
			0	1	2	3	4	5	6	7	8	9	answer
		0348									0348		difference
		0014					0014						
		0641		0641									
		3851		3851									
		0074					0074						
		0641,3851,0014,0074,0348											
		Pass 2:											
			0	1	2	3	4	5	6	7	8	9	
		0641					0641						
		3851						3851					
		0014		0014									
		0074								0074			
		0348					0348						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

0014,0641,0348,3851,0074 Pass 3:												
	0014	0014	1	2	3	4	5	6	/	8	9	
	0641	0014						0641				
	0348				0348			00.1				
	3851									3851		
	0074	0074										
0014,0074,0348,0641,3851 Pass 4:												
		0	1	2	3	4	5	6	7	8	9	
	0014	0014										
	0074	0074										
	0348	0348										
	0641	0641				2054						
	3851					3851						
b	Write	an algo	Sorte	ed Eler to inse	nents a ert a ne	nre: 14, w node	, 74, 34 e at the	8, 641, e begin	3851 ning a	nd end	of the	4M
	singly	linked	list.									
Ans	1. Alg	gorithn	i for ir Insert	isertin first(st	g a nod art, iter	le at th n)	e begir	ning				2M for Algorithm for inserting a
	1. [check the overflow] if Ptr=NULL then print 'Overflow'										node at the beginning 2M for	
	exit										Algorithm for Inserting A	
				else	.							Node at the End
				Ptr=(node *)) mallo	c (size	of (nod	e))			
			//creat	te new	node fr	om me	mory a	nd assig	gn its a	ddress	to ptr	

	End if	
	2. set $Ptr > num = item$	
	3. set Ptr->next=start	
	4. set statt-ru	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	After Insertion	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	2. Algorithm for Inserting A Node at the End	
	insert last (start, item)	
	1. [check for overflow]	
	If Ptr=NULL, then print 'Overflow'	
	exit	
	else	
	Ptr=(node *) malloc (sizeof (node));	
	end if	
	2. set Ptr->info=item	
	3. set Ptr->next=NULL	
	4. if start=NULL and if then set start=P	
	5. set loc=start	
	6. repeat step 7 until loc->next != NULL	
	7. set loc=loc->next	
	8. set loc->next=P	
	$\begin{array}{c} \text{Start} \longrightarrow 10 \end{array} \longrightarrow 20 \end{array} \longrightarrow 30 \text{ Null} \longrightarrow 40 \text{ Null} \\ \uparrow \\ \text{Loc} \end{array} \xrightarrow{40 \text{ Rt}} \text{Rt}$	
	After Insertion	
	Start \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 Null	
с	Explain the concept of circular Queue along with its need.	4M
Ans	• Circular queue are the queues implemented in circular form rather	3 M for
	than in a straight line.	explanation
	• Circular queues overcome the problem of unutilized space in linear	and & 1M for
	queue implemented as an array.	need
	• The main disadvantage of linear queue using array is that when	

			33			
			35			
			4	\sim		
3		Attempt any Three of the follo	wing			12M
5.	а	Explain time and space comple	xity wi	th an examn	ole.	4M
	Ans	Time Complexity: Time complexity	exity of	program or	algorithm is amount of	2M for Time
		computer time that it needs	to run	to complet	ion. To measure time	Complexity
		complexity of an algorithm we	concen	trate on dev	veloping only frequency	and
		count for key statements.				2M for space
		Eler				complexity
		Example:				
		woid main ()				
		s void main ()				
		int i n sum x.				
		s_{11} s				
		printf("\n Enter no of	data to	be added");		
		scanf("% d", &n);		,,		
		for(i=0; i <n; i++)<="" th=""><th></th><th></th><th></th><th></th></n;>				
		Statement	Frequenc	Computational Ti	me	
		sum=0	y 1	t ₁		
		printf("\n Enter no of data to be	1	t ₂		
		added")				
		scanf("% d", &n)	1	t ₃		
		for(i=0; i <n; i++)<="" th=""><th>n+1</th><th>(n+1)t₄</th><th></th><th></th></n;>	n+1	(n+1)t ₄		
		scanf("%d", &x)	n	nt ₅		
		sum=sum+x	n	nt ₆		
		printf("\n Sum = %d ", sum)	1	t7		
		Total computational ti T=n(t4+t5+t6)+(t1+t) For large n, T can be T=n(t4+t5+t6)=kn w Thus T = kn or	me= t1- t2+t3+t4 approx /here k=	+t2+t3+(n+1) 4+t7) imated to = t4+t5+t6)t4 +nt6+nt5+t7	

Space Complexity: Total amount of computer memory required by an algorithm to complete its execution is called as space complexity of that algorithm. When a program is under execution it uses the computer memory for THREE reasons. They are as follows... • Instruction Space: It is the amount of memory used to store compiled version of instructions. Environmental Stack: It is the amount of memory used to store information of partially executed functions at the time of function call. Data Space: It is the amount of memory used to store all the variables and constants. If the amount of space required by an algorithm is increased with the increase of input value, then that space complexity is said to be Linear Space Complexity. Example: int sum(int A[], int n) int sum = 0, i; for(i = 0; i < n; i++) sum = sum + A[i];return sum;} In the above piece of code it requires 'n*2' bytes of memory to store array variable 'a[]' 2 bytes of memory for integer parameter 'n' 4 bytes of memory for local integer variables 'sum' and 'i' (2 bytes each) 2 bytes of memory for return value. That means, totally it requires '2n+8' bytes of memory to complete its execution. Here, the total amount of memory required depends on the value of 'n'. As 'n' value increases the space required also increases proportionately. This type of space complexity is said to be Linear Space Complexity. OR **Time complexity:**- Time complexity of a program/algorithm is the amount of computer time that it needs to run to completion. While calculating time complexity, we develop frequency count for all key statements which are important and basic instructions of an algorithm. Example: Consider three algorithms given below:-

	Algorithm A: - a=a+1Algorithm B: - for x = 1 to n step 1a=a+1LoopAlgorithm C:- for x=1 to n step 1for y=1 to n step 1a=a+1LoopFrequency count for algorithm A is 1 as a=a+1 statement will execute onlyonce. Frequency count for algorithm B is n as a=a+1 is key statementexecutes n time as the loop runs n times.Frequency count for algorithm C is n as a=a+1 is key statement executes n2time as the inner loop runs n times, each time the outer loop runs and theouter loop also runs for n times.Space complexity:- Space complexity of a program/algorithm is the amountof memory that it needs to run to completion. The space needed by theprogram is the sum of the following components:-Fixed space requirements: - It includes space for instructions, for simplevariables, fixed size structured variables and constants.Variable time requirements: - It consists of space needed by structuredvariables whose size depends on particular instance of variables. Example: -additional space required when function uses recursion.	
b	Convert the following infix expression to postfix expression using stack and show the details of stack in each step.((A+B)*D)^(E-F)	4 M
Ans	infix expression: (((A+B)*D)^(E-F))	Correct answer-4M

	Current Symbol	Operator Stack	Postfix array	
	((Empty	
	(((Empty	
	((((Empty	
	A	(((А	
	+	(((+	A	
	В	(((+	AB	
)	((AB+	
	*	((*	AB+	
	D	((*	AB+D	
)	(AB+D*	
	^	(^	AB+D*	
	((^(AB+D*	
	E	(^(AB+D*E	
	-	(^(-	AB+D*E	
	F	(^(-	AB+D*EF	
)	(^	AB+D*EF-	
)	EMPTY STACK	AB+D*EF-^	
	Postfix expression	n: AB+D*EF-^		
c Implei	nent a 'C' program to	o search a particu	lar data from the given	41
Ans Progra	imig Emear Search.			

	# include <stdio h=""></stdio>	2M for logic
	#include <conio h=""></conio>	And 2 M for
	void main ()	svntax
		Syntax
	int a[10] n key i c=0	
	clrscr():	
	printf ("Enter number of array elements\n"):	
	scanf ("%d" &n).	
	printf ("Enter array elements\n").	
	for $(i=0; i < n; i++)$	
	scanf (" $^{(*)}$ d" &a[i]).	
	nrinntf ("Enter key value\n").	
	scanf ("%d" &key):	
	for(i=0:i < n-1:i++)	
	{	
	l	
	if $(\text{kev} == a[i])$	
	{	
	c=1;	
	printf ("%d is found at location %d\n", key, i+1);	
	break;	
	}	
	}	
	if (c==0)	
	printf ("%d not present in the list\n",key);	
	getch();	
	}	
d	Draw an expression tree for the following expression:	4M
	$(a-2b+5e)^2 * (4d=6e)^5.$	
Ans		Correct
		Expression
		tree-4M

_		• • •			0 (1 0							4004
4.	2	Atten	ipt any	Three tion of	ot the fo	ollowin 21 usi	g: na hiner	W SOARA	h moth	od in or	·av · A ?	12M 4M
	a	given	below:	A = (11.4)	5.21.3.29	21 usi	15}	y scarc	n meu	iou ili ai i	ay A	4101
	Ans	Given	Array			<u>, , , , , , , , , , , , , , , , , , , </u>						Each correct step -2M each
			11	5	21	3	29	17	2	45		
		Sorte	d Array	for inp	out:							
			2	3	5	11	17	21	29	45		
		Key e	lement	to be se	arched=	=21						
		Step1	0	1	2	3	4	5	6	7		
			2	3	5	11	17	21	29	45		
			l=0	and u=	n-1 =7			_				
		mid=((I+u)/2 :	= 7/2 =	5							
		a[mid and	ij=11 no	ot equal	to 21							

		21 > 11						
		Sten 2:						
		Step =1	4	5	6	7		
			17	21	29	45		
						<u>I </u>		
			-					
		I=4 and $u=1$	/					
		mid= 11/2 =						
		o[anal ta han a	lamant 31				
		a[mid]=21 e	qual to key e	lement 21				
		therefore ke	y element 21	is fount un	n array at po	sition 6		
			•		U I			
	b	Difference b	etween tree a	and graph(Any 4 points	5)		4M
	Ans	1					7	Any correct 4
			Tree	e	Gra	ıph	_	points- 4M
			Tree is speci	al form 1	In graph there	e can be		
			of graph i.e.	1	more than on	e path i.e.		
			minimally co	onnected §	graph can hav	ve uni-		
			graph and ha	ving o	directional or	bi-		
			only one path	n o	directional pa	ths (edges)		
			between any	two l	between node	es		
			vertices.					
			Tree is a spe	cial case 0	Graph can ha	ve loops,		
			of graph hav	ing no 🛛 🤇	circuits as we	ell as can		
			loops, no cire	cuits and I	have self-loop	os.		
			no self-loops		-			
			Tree traversa	ıl is a 🛛 🤇	Graph is trave	ersed by	-	
			kind of speci	al case	DFS: Depth H	First Search		
			of traversal of	of graph.	and in BFS :	Breadth		
			Tree is traver	rsed in 1	First Search a	lgorithm		
			Pre-Order, Ir	n-Order		C		
			and Post-Orc	ler				
			Different typ	es of 7	There are mai	inly two	1	
			trees are: Bir	nary t	types of Grap	hs: Directed		
			Tree, Binary	Search a	and Undirected	ed graphs.		
			Tree, AVL ti	ee,		C I		
1				,			1	

		11	ree applications:	Graph applications :	
		SC	orting and searching	Coloring of maps, in OR	
		lil	ke Tree Traversal	(PERT & CPM),	
		&	Binary Search.	algorithms, Graph	
				coloring, job scheduling,	
				etc.	
		T	ree always has n-1	In Graph, no. of edges	
		ec	lges.	depends on the graph.	
		T	ree is a hierarchical	Graph is a network	
		m	odel.	model.	
	C	Construct a si	ngly linked list using	σ data fields 21 25 96 58 74 and show	4M
	•	nrocedure ster	-hy-sten with the h	eln of diagram start to end	
-	Δns	procedure step	-by-step with the h	cip of diagram start to citu.	correct
					construction -
					3M and
		C41.	Tattalla Ballada da annata		Sivi allu
		Step1:	Start=NULL		
			Incort rada 21		1 M
			lisert node 21		
			Start		
			21 NULL		
		Step2:	insert node 25		
		Start tra	aversing linked list from start till last node of lin	nked list and then add a new node	
			Start		
			21 25 NULL		
		Step3:	Insert node 96		
			Start		
			21 25		
		Step 4:	Insert node 58		
			Start		
			21 25	96 58 NULL	
		Sten 5:	nsert node 74		
		ouper			
			Start		
			21 25	96 58 74 NULL	
	Ь	Show the offee	t of PUSH and POI	Poneration on the stack of size 10	<u> ۵</u> м
	u	DISH(10)	t of I USII allu PUI	operation on the stack of size 10.	-101
		$I \cup SH(10)$			
		rusn(20)			

	POP PUSH(30)	
Ans	Initial Stack empty	Each correct
	stack[9] stack[8] stack[7] stack[6] stack[5]	
	stack[4] stack[3] stack[2] stack[1] stack[0]	
	Step 1:	
	PUSH(0) top=top+1 stack[0]=10	
	stack[9] stack[8] stack[7] stack[6] stack[5] stack[4] stack[3] stack[1] 10 stack[0] top=0	
	POSH(0) top=top+1 stack[1]=20 stack[9] stack[8] stack[7] stack[6] stack[5] stack[4] stack[3] stack[2] 20 stack[0]	
	POP	

	-	ton-tor	1 20 is deleted	
		ιορ=ιομ	20 is deleted	
	2	stack[9]		
		stack[8]]	
		stack[7]		
		stack[6]		
		stack[5]		
		stack[4]		
		stack[3]		
		stack[3]		
		stack[2]		
		SLACK[1]		
	10	stack[U]	j top=0	
	Step 4:			
		PUSH(0)	
	t	top=top	o+1 stack[1]=30	
		stack[9]]	
		stack[8]]	
		stack[7]		
		stack[6]		
		stack[5]		
		stack[4]		
		stack[7]		
		stack[3]		
		SLOCK[Z]	 	
	30	Stack[1]	l tob=t	
		stack[0]		
е	Compare Linked List and A	rray (any 4 points).	4M
Ans				1M for each
	Linked List		Array	valid difference
	Array is a collection	of	Linked List is an ordered	
	elements of similar d	ata	collection of elements of same	
	type.		type, which are connected to	
			each other using pointers.	
	Array supports Rand	om	Linked List	
	Access, which means	s	supports Sequential Access.	
	elements can be acce	ssed	which means to access any	
	directly using their in	dar	alement/rada in a linked list	
		iuex,		
	like arr[0] for 1st		we have to sequentially	
	element, arr[6] for 7t	h	traverse the complete linked	
	element etc.		list, up to that element.	
			· •	

Hence, accessing elements in an array is fast with a constant time complexity of O (1). In array, Insertion and Deletion operation takes more time, as the memory locations are consecutive and fixed.	To access nth element of a linked list, time complexity is O (n). In case of linked list, a new element is stored at the first free and available memory location, with only a single overhead step of storing the address of memory location in the previous node of linked list. Insertion and Deletion operations are fast in linked list.	
Memory is allocated as soon as the array is declared, at compile time. It's also known as Static Memory Allocation. In array, each element is independent and can be accessed using it's index value	Memory is allocated at runtime, as and when a new node is added. It's also known as Dynamic Memory Allocation. In case of a linked list, each node/element points to the next, previous, or maybe both nodes.	
Array can single dimensional, two dimensional or multidime nsional	Linked list can be Linear (Singly), Doubly or Circular li nked list.	
Size of the array must be specified at time of array declaration.	Size of a Linked list is variable. It grows at runtime, as more nodes are added to it.	
Array gets memory allocated in the Stack section	Whereas, linked list gets memory allocated in Heap section.	

		arr arr[0] 20 0x100 arr[1] 33 0x104 arr[2] 14 0x108 arr[3] 65 0x112 arr[4] 81 0x116	HEAD Single Linked List 5 5 7 5 3 5 4 5 NULL HEAD Double Linked List NULL 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5		
5.		Attempt any Three of the followi	ng:	12- M	
	а	Implement a 'C' program to inse	rt element into the queue and dele	ete 6M	
		the element from the queue.	-		
	A	Him to be set the to	Transit la sia		
	Ans	#include <statio.n> #include<conio.h></conio.h></statio.n>		3M. delete	
		#define max 5		logic-3M	
		void main()			
		{ int a[max] front rear no ch i:			
		int a[max],tront,rear,no,ch,i; clrser():			
		front=rear=-1;			
		do			
		{ printf("\n 1 INSEPT");			
		print(\n 1.INSERT), printf("\t 2.DELETE");			
		printf("\t 3.EXIT");			
		printf("\n\n ENTER YOUR CHOICE:- ");			
		scan(%d ,&cn); switch(ch)			
		{			
		case 1:			
		printt("\n ENTER ITEM TO BE INSERTED :- "); scanf("%d",&no):			
		if(rear==max-1)			
		{ printf ("\n QUEUE IS FULL.");			

	break;	
	}	
	rear=rear+1;	
	a[rear]=no;	
	if(front==-1)	
	front=0;	
	break:	
	case 2:	
	if(front=-1)	
	{	
	u printf ("\n OUEUE IS EMPTY "):	
	break:	
)	
	}	
	III = a[IIIIII];	
	prinu(\n DELETED ELEMENT IS:- %d ,no);	
	in(front==rear)	
	tront=rear=-1;	
	else	
	front=front+1;	
	break;	
	case 3:	
	exit(0);	
	}	
	printf("\n\n DO YOU WANT TO CONTINUE:(1 FOR YES/2 FOR NO):-");	
	scanf("%d",&ch);	
	}while(ch==1);	
	getch();	
	}	
b	Consider the graph given in following figure and answer given	6M
	questions.	
	4	
	\frown \frown	
	(1) (2)	
	T T	
	×3)	
	The l	
	(5)	
	K	
	(4)	
	1) All simple and from 1.45 5	
	1) All simple path from 1 to 5	
	2)In-degree of and out-degree of 4	
	5) Give Adjacency matrix for the given graph.	
	4) Give Adjacency list representation of the given graph.	

i) Nodes: 1-2-5			Simple path: - Each path ¹ / ₂
ii) Nodes: 1-3-2-5			M Each degree
2)			$\frac{1}{2}$ M
In degree of node 4- 1, Out degree of node 4 - 0			
3)Correct adjacent	ey matrix:		Correct adjacency matrix: 2M Adjacency list
A	= 2 0	2345	representation -2M
4) Adjacency list re	epresentation		
4) Adjacency list re	epresentation	Adjacent nodes	
4) Adjacency list re	epresentation	Adjacent nodes 2,3	
4) Adjacency list re	epresentation Node 1 2	Adjacent nodes 2,3 5	
4) Adjacency list r	epresentation 0 4 0 5 0	Adjacent nodes 2,3 5 2,4	
4) Adjacency list re	epresentation 1 2 3 4	Adjacent nodes 2,3 5 2,4 NIL	

		Representation:	
	С	Write an algorithm to search a particular node in the give linked list.	6M
	Ans	Assumption: Node contains two fields: info and next pointer start pointer : Header node that stores address of first node step 1: start step 2: Declare variable no, flag and pointer temp step 3: Input search element step 4: Initialize pointer temp with the address from start pointer.(temp=start), flag with 0 step 5: Repeat step 6 till temp != NULL step 6: compare: temp->info = no then set flag=1 and go to step 7 otherwise increment pointer temp and go to step5 step 7: compare: flag=1 then display "Node found" otherwise display "node not found"	Correct steps of algorithm- 6M
		step of step	
6.		Attempt any Three of the following:	12M
	а	Elaborate the steps for performing selection sort for given elements of array. A={37,12,4,90,49,23,-19}	6M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

b	Explain the concept of recursion using stack.									6 M
Ans	Recursion is a p	Explanation-								
	body contains	a functi	on call	S	tatement	that c	alls its	elf repet	itively.	4M & 2M for
	Recursion is an	applicati	on of sta	cl	k. When	a recurs	sive fun	ction call	s itself	Example
	from body, stack is used to store temporary data handled by the function in									
	every iteration.									
	Example:									
	function call from main() : fact(n); // consider n=5									
	Function definition:									
	int fact(int n)									
	{									
	1I(n==1)									
	else									
	return(n*fact(n-	1))•								
	}	.,,,								
	In the above recursive function a function call fact (n-1) makes a recursive									
	call to fact function. Each time when a function makes a call to itself, it save									
	its current status in stack and then executes next function call. When fact ()									
	function is called									
	inside function									
	value of n is sto									
	called again with									
	and then it is re									
	from stack are									
	multiplication to									
	inditipitedition to									
	f(1)	POP								
	f(2)	f(2)	POP				-			
	false return 2**f(1)	false return 2*1								
	f(3)	6(3)	f(3)		POP					
	false return 3*f(2)	false return 3*f(2)	false return 3*2							
	f(4) false return 4*f(3)	f(4) false return 4*f(3)	f(4) false return 4#f(3)		f(4) false return 4*6	POP				
	f(5) // line 1 false	f(5) // line 1 false	f(5) # line 1 false		f(5) # line 1 false	f(5) # line 1 false	POP			
	return 5*f(4)	return 5*f(4)	return 5*f(4)		return 5*f(4)	return 5*24	(min)	202		
	y = f(5)	y = f(5)	y = f(5)		y = f(5)	y = f(5)	y=120	FOF		
	T (1 1 1					1. 0	1			
	In the above dia	gram, firs	st column	1 5	shows rea	sult of p	ush ope	ration aft	er each	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

